Jet Propulsion Laboratory JPL Earth JPL Solar System JPL Stars and Galaxies JPL Science and Technology Mars Reconnaissance Orbiter NASA Home Page Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content
NASA logo, Jet Propulsion Laboratory, California Institute of Technology header separator
+ NASA Homepage
+ NASA en Español
+ Marte en Español
GO!
Mars Reconnaissance Orbiter
Overview Science Technology The Mission People Features Events Multimedia
Mars for Kids
Mars for Students
Mars for Educators
Mars for Press
+ Mars Home
+ MRO Home
Multimedia
Summary
Images
bullet Press Release Images
bullet MOI
bullet Cruise
bullet Aerobraking
bullet Spacecraft
bullet Mars Artwork
bullet Dust Storms
bullet Launch
bullet Calibration
Videos
Press Release Images
Return to Press Release Images index
This CRISM image is a combination of two images of the same area on Mars.  When the upper left image was taken there were clouds and haze which makes it more difficult to see the surface.  It was clear when the second, lower right, image was taken which enables surface features, such as the small crater in the upper left to be clearly seen
Full Res JPG (4.25 MB)
16-Feb-2007
A Change in the Weather
This CRISM image is a combination of two images of the same area on Mars.  When the upper left image was taken there were clouds and haze which makes it more difficult to see the surface.  It was clear when the second, lower right, image was taken which enables surface features, such as the small crater in the upper left to be clearly seen
These two Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) images were acquired over the northern plains of Mars near one of the possible landing sites for NASA's Phoenix mission, set to launch in August 2007. The lower right image was acquired first, on Nov. 29, 2006, at 0720 UTC (2:20 a.m. EST), while the upper left image was acquired about one month later on Dec. 26, 2006, at 0030 UTC (or Dec. 25, 2006, at 7:30 p.m. EST). The CRISM data were taken in 544 colors covering the wavelength range from 0.36-3.92 micrometers, and show features as small as about 20 meters (66 feet) across. The images shown above are red-green-blue color composites using wavelengths 0.71, 0.6, and 0.53 micrometers, respectively (or infrared, red, and green light), and are overlain on a mosaic of Mars Odyssey Thermal Emission Imaging System (THEMIS) visible data. Each image covers a region about 11 kilometers (6.6 miles) wide at its narrowest, and they overlap near 71.0 degrees north latitude, 252.8 degrees east longitude

The Earth equivalent to the season and latitude of this site is late summer in northern Canada, above the Arctic Circle. At that season and latitude, Martian weather conditions are transitioning from summer with generally clear skies, occasional weather fronts, and infrequent dust storms, to an autumn with pervasive, thick water-ice clouds.

The striking difference in the appearance of the images is caused by the seasonal development of water-ice clouds. The earlier (lower right) image is cloud-free, and surface features can clearly be seen like the small crater in the upper left. However, the clouds and haze in the later (upper left) image make it hard to see the surface. There are variations in the thickness and spacing of the clouds, just like clouds on Earth. On other days when nearby sites were imaged, the cloud cover varied day-to-day, but as the seasons change the trend is more and thicker clouds.

With the onset of autumn the clouds will gradually cover the area and, just as with autumn on Earth, the Martian day is getting shorter at these high northern latitudes. In a few more months this area will settle into winter darkness and be covered in a layer of frost and carbon dioxide snow.

Credit: NASA/JPL/JHUAPL
Browse Image | Medium Image (277 kB) | Large (4.25 MB)
This is a series of four CRISM images, two are main images and two are insets, or highlighted areas of the larger images.  The first image is a grayish, false color image of the area which has many small craters.  In the very center of the image is a small, dark crater.  The accompanying inset image is a close up of the dark crater in the center of the larger image.
A Fresh Crater Drills to Tharsis Bedrock

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this image of a newly formed impact crater in the Tharsis region of Mars at 1316 UTC (8:16 a.m. EST) on Jan. 13, 2007, near 17.0 degrees north latitude, 246.4 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered by the image is just over 10 kilometers (6 miles) wide at its narrowest point.

The Tharsis region is a high volcanic plateau that stands about 5 kilometers (3 miles) above the surrounding plains. The rocks forming Tharsis are younger than in most parts of mars, as evidenced by their low density of craters. The best estimate of their age is comparable to the age of Shergotty-class meteorites thought to originate from Mars. However, Tharsis is covered by a nearly unbroken, meters-thick layer of dust that has frustrated all attempts to measure its bedrock composition remotely, and to determine if it matches the composition of Shergotty-class meteorites.

The recent discovery of dark, newly formed impact craters on Mars has provided the CRISM team a chance, finally, to measure the rocks that make up Tharsis. Over the lifetime of the Mars Global Surveyor mission, its high-resolution Mars Orbiter Camera monitored the surface and documented the very recent formation of some two dozen small impact craters. Several of them are in Tharsis and pierce the plateau's dust blanket to expose bedrock. MRO's instruments have been trained on these and other very young craters that serve as "drill holes" into Mars' volcanic crust. The crater shown here was recognized in images taken by Mariner 9 in 1972, but its dark rays and minimal dust cover show that it is very young.

The top image was constructed from three infrared wavelengths that usually highlight compositional variations. This image shows the impact crater, a ring of dark, excavated rock (inset), and a surrounding system of rays. Crater rays are common around young impact craters, and they form when ejected boulders reimpact the surface and stir up the local rock and soil. The colors are bland because the scene is dominated by dust except for the dark crater and the ejecta immediately surrounding it.

The bottom image is a spectral map constructed using measurements of the 544-color spectra that separate dust and rock. The bright, deep orange areas are undisturbed dust. The crater rays' chocolate color in this rendition shows that they are slightly darker, more packed-down soil that was exposed by reimpacting boulders. The bright green color immediately around the new crater (inset) is where mafic rock (rock rich in the iron- and magnesium-containing minerals pyroxene and olivine) have been exposed.

Credit: NASA/JPL/JHUAPL
Browse Image | Medium Image (366 kB) | Large (622 kB)

JPL Image Use Policy

Credits Feedback Related Links Sitemap
USA Gov
footer NASA logo