Follow this link to skip to the main content NASA Jet Propulsion Laboratory California Institute of Technology JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY BRING THE UNIVERSE TO YOU JPL Email News RSS Mobile Video
JPL Banner
Mars Reconnaissance Orbiter
Home Participate
MULTIMEDIA

Images

Image Gallery


read the article 'Erisa Hines'
03.30.2016 Erisa Hines
read the article 'Buzz Aldrin'
03.30.2016 Buzz Aldrin
read the article 'Women in Science'
02.12.2016 Women in Science
read the article 'Wind at Work'
02.10.2016 Wind at Work
read the article 'Avalanche Ho!'
09.30.2015 Avalanche Ho!
read the article 'Icy Wonderland'
05.11.2015 Icy Wonderland
read the article 'South Pole Spiders'
03.27.2015 South Pole Spiders
read the article 'A Smile a Day....'
03.27.2015 A Smile a Day....
This HiRISE image (PSP_003597_1765), shows fractured mounds on the southern edge of Elysium Planitia.

The mounds are typically a few kilometers in diameter and about 200 feet tall. The fractures that crisscross their surfaces are dilational (extensional) in nature, suggesting that the mounds formed by localized uplift (i.e., they were pushed up from below).

The mounds are probably composed of solidified lava. They are contiguous with, and texturally similar to, the flood lavas that blanket much of Elysium Planitia, and, where dilation cracks provide cross-sectional exposure, the uplifted material is rocky.

Patches of mechanically weak and disrupted material overlie the rocky mound material. This is particularly conspicuous in the northeast corner of the HiRISE image. These patches may be remnants of a layer that was once more continuous but has been extensively eroded. Smooth lava plains fill the low-lying areas between the mounds. They are riddled with sinuous pressure ridges. The entire area is covered by a relatively thin layer of dust and sand.
05.23.2007

Fractured Mounds in Elysium Planitia

This HiRISE image (PSP_003597_1765), shows fractured mounds on the southern edge of Elysium Planitia.

The mounds are typically a few kilometers in diameter and about 200 feet tall. The fractures that crisscross their surfaces are dilational (extensional) in nature, suggesting that the mounds formed by localized uplift (i.e., they were pushed up from below).

The mounds are probably composed of solidified lava. They are contiguous with, and texturally similar to, the flood lavas that blanket much of Elysium Planitia, and, where dilation cracks provide cross-sectional exposure, the uplifted material is rocky.

Patches of mechanically weak and disrupted material overlie the rocky mound material. This is particularly conspicuous in the northeast corner of the HiRISE image. These patches may be remnants of a layer that was once more continuous but has been extensively eroded. Smooth lava plains fill the low-lying areas between the mounds. They are riddled with sinuous pressure ridges. The entire area is covered by a relatively thin layer of dust and sand.

Image Credit: NASA/JPL-Caltech/Univ. of Arizona


All Images

HiRISE Flickr Photostream

HiRISE Flickr Wallpaper

HiRISE Flickr 4K

HiRISE Flickr 8K

USA.gov
PRIVACY     FAQ     SITEMAP     FEEDBACK     IMAGE POLICY