Follow this link to skip to the main content NASA Jet Propulsion Laboratory California Institute of Technology JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY BRING THE UNIVERSE TO YOU JPL Email News RSS Podcast Video
JPL Banner
2001 Mars Odyssey
Home Participate
MULTIMEDIA

Images


read the article 'Erisa Hines'
03.30.2016 Erisa Hines
read the article 'Buzz Aldrin'
03.30.2016 Buzz Aldrin
read the article 'Women in Science'
02.12.2016 Women in Science
read the article 'Ravi Vallis'
08.03.2012 Ravi Vallis
read the article 'Dao Valles'
08.03.2012 Dao Valles
read the article 'Lismore Crater'
07.17.2012 Lismore Crater
read the article 'Bunge Crater Dunes'
04.01.2012 Bunge Crater Dunes
read the article 'Shalbatana Vallis'
04.01.2012 Shalbatana Vallis
read the article 'Meridiani Planum'
04.01.2012 Meridiani Planum
read the article 'Canyon Junction'
04.01.2012 Canyon Junction
read the article 'Terra Sirenum'
04.01.2012 Terra Sirenum
read the article 'Echus Chasma'
01.23.2012 Echus Chasma
read the article 'Elysium Mons'
01.10.2012 Elysium Mons
read the article 'Tyrrhena Fossae'
12.26.2011 Tyrrhena Fossae
read the article 'Tempe Terra'
08.27.2010 Tempe Terra
read the article 'Aonia Terra Dunes'
10.26.2009 Aonia Terra Dunes
read the article 'Dark Spots'
07.22.2009 Dark Spots
read the article 'Dark Spots and Fans'
07.22.2009 Dark Spots and Fans
read the article 'Mars Canyon View'
07.22.2009 Mars Canyon View
read the article 'Landslide Run-Out'
07.22.2009 Landslide Run-Out
read the article 'Terra Sirenum'
07.22.2009 Terra Sirenum
This false-color map shows the area within Gale Crater on Mars, where NASA's Curiosity rover landed on Aug. 5, 2012 PDT (Aug. 6, 2012 EDT).
09.27.2012

Downslope of the Fan

This false-color map shows the area within Gale Crater on Mars, where NASA's Curiosity rover landed on Aug. 5, 2012 PDT (Aug. 6, 2012 EDT). It merges topographic data with thermal inertia data that record the ability of the surface to hold onto heat. Red indicates a surface material that retains its heat longer into the evening, suggesting differences relative to its surroundings. One possibility is that the materials that make up these soils and rocks have been more tightly bound together by mineral cements. The black oval indicates the targeted landing area for the rover, known as the "landing ellipse," and the cross shows where the rover actually touched down at the Bradbury Landing site.

An alluvial fan, or fan-shaped deposit where debris spread out downslope, has been highlighted in lighter colors for better viewing. On Earth, alluvial fans often are formed by water flowing downslope. New observations from Curiosity of rounded pebbles embedded with rocky outcrops provide concrete evidence that water did flow in this region on Mars, creating the alluvial fan. Water carrying the pebbly material is thought to have streamed downslope, extending the alluvial fan, at least occasionally, to where the rover now sits, studying its ancient history. The evidence for former water at the Bradbury Landing site may help the science team better understand the nature of the red areas in this map.

The rover is heading toward Glenelg, just to the lower right of Bradbury, where three different types of material connect up in a "triple junction."

This image was obtained by the Thermal Emission Imaging System on NASA's Odyssey orbiter.

Image Credit: NASA/JPL-Caltech/ASU

All Images
USA.gov
PRIVACY     FAQ     SITEMAP     FEEDBACK     IMAGE POLICY