Follow this link to skip to the main content National Aeronautics and Space Administration Logo
NASA Banner
NASA Mars Exploration Program
Mars Exploration Program


read the article 'COBALT/Langley'
03.17.2017 COBALT/Langley
read the article 'COBALT/JPL team'
03.17.2017 COBALT/JPL team
read the article 'Mono Lake'
01.26.2017 Mono Lake
read the article 'Ribbon Cutting'
09.19.2016 Ribbon Cutting
Phobos from 5,800 Kilometers

Phobos from 6,800 Kilometers

The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter took two images of the larger of Mars' two moons, Phobos, within 10 minutes of each other on March 23, 2008. This is the second, taken from a distance of about 5,800 kilometers (about 3,600 miles). The illuminated part of Phobos seen in the images is about 21 kilometers (13 miles) across.

The most prominent feature in the images is the large crater Stickney in the lower right. With a diameter of 9 kilometers (5.6 miles), it is the largest feature on Phobos. A series of troughs and crater chains is obvious on other parts of the moon. Although many appear radial to Stickney in this image, recent studies from the European Space Agency's Mars Express orbiter indicate that they are not related to Stickney. Instead, they may have formed when material ejected from impacts on Mars later collided with Phobos. The lineated textures on the walls of Stickney and other large craters are landslides formed from materials falling into the crater interiors in the weak Phobos gravity (less than one one-thousandth of the gravity on Earth).

In the full-resolution version of this image, a pixel encompasses 5.8 meters (19 feet), providing a resolution (smallest visible feature) of about 15 meters (about 50 feet). Previous pictures from NASA's Mars Global Surveyor are of slightly higher resolution, at 4 meters (13 feet) per pixel. However, the HiRISE images have higher signal-to-noise, making the new data some of the best ever for Phobos.

Although the image is displayed here in black and white, data from HiRISE's three color channels were used to give higher signal-to-noise, thereby increasing detail. The image is in the HiRISE catalog as PSP_007769_9015.

Image Credit: NASA/JPL-Caltech/University of Arizona

All Images